Spinal motor outputs during step-to-step transitions of diverse human gaits
نویسندگان
چکیده
Aspects of human motor control can be inferred from the coordination of muscles during movement. For instance, by combining multimuscle electromyographic (EMG) recordings with human neuroanatomy, it is possible to estimate alpha-motoneuron (MN) pool activations along the spinal cord. It has previously been shown that the spinal motor output fluctuates with the body's center-of-mass motion, with bursts of activity around foot-strike and foot lift-off during walking. However, it is not known whether these MN bursts are generalizable to other ambulation tasks, nor is it clear if the spatial locus of the activity (along the rostrocaudal axis of the spinal cord) is fixed or variable. Here we sought to address these questions by investigating the spatiotemporal characteristics of the spinal motor output during various tasks: walking forward, backward, tiptoe and uphill. We reconstructed spinal maps from 26 leg muscle EMGs, including some intrinsic foot muscles. We discovered that the various walking tasks shared qualitative similarities in their temporal spinal activation profiles, exhibiting peaks around foot-strike and foot-lift. However, we also observed differences in the segmental level and intensity of spinal activations, particularly following foot-strike. For example, forward level-ground walking exhibited a mean motor output roughly 2 times lower than the other gaits. Finally, we found that the reconstruction of the spinal motor output from multimuscle EMG recordings was relatively insensitive to the subset of muscles analyzed. In summary, our results suggested temporal similarities, but spatial differences in the segmental spinal motor outputs during the step-to-step transitions of disparate walking behaviors.
منابع مشابه
Activity of pectoral fin motoneurons during two swimming gaits in the larval zebrafish (Danio rerio) and localization of upstream circuit elements.
In many animals, limb movements transition between gait patterns with increasing locomotor speed. While for tetrapod systems several well-developed models in diverse taxa (e.g., cat, mouse, salamander, turtle) have been used to study motor control of limbs and limb gaits, virtually nothing is known from fish species, including zebrafish, a well-studied model for axial motor control. Like tetrap...
متن کاملActivity of Pectoral Fin Motoneurons during Two Swimming Gaits in the Larval 1 Zebrafish (danio Rerio) and Localization of Upstream Circuit Elements. 2 3
In many animals, limb movements transition between gait patterns with 32 increasing locomotor speed. While in for tetrapod systems, several well-developed 33 models in diverse taxa (e.g. cat, mouse, salamander, turtle) have been used to study 34 motor control of limbs and limb gaits, virtually nothing is known from fish species, 35 including zebrafish, a well studied model for axial motor contr...
متن کاملNeural control of interlimb oscillations. II. Biped and quadruped gaits and bifurcations.
Behavioral data concerning animal and human gaits and gait transitions are simulated as emergent properties of a central pattern generator (CPG) model. The CPG model is a version of the Ellias-Grossberg oscillator. Its neurons obey Hodgkin-Huxley type equations whose excitatory signals operate on a faster time scale than their inhibitory signals in a recurrent on-center off-surround anatomy. A ...
متن کاملSpeed control in animal locomotion: transitions between symmetrical and nonsymmetrical gaits in the dog.
Transitions between symmetrical and nonsymmetrical gaits as a speed control mechanism in dog locomotion were investigated. The external locomotion parameters such as swing and stance durations as well as stride length were measured in freely moving animals and were used to determine the spatial and temporal phase shifts between limb movements. The typical transition from trot to gallop and two ...
متن کاملاثر فعالیت شناختی بر تعادل راهرفتن در افراد مبتلا به بیثباتی عملکردی مچ پا
Objective Some individuals with Chronic Ankle Instability (CAI) termed as functional ankle instability (FAI) suffer from repetitive ankle giving way and feeling of ankle joint instability during dynamic activities like walking. Walking, as a postural task, requires some central attention to integrate sensory inputs, estimate, and plan and produce proper motor outputs. Attention demanding cognit...
متن کامل